

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

## Phenazinium methyl sulfate

#### Nai-Qiang Zhang,<sup>a</sup> Ping Li,<sup>b</sup> Jian Dong<sup>b</sup> and Hong-Yu Chen<sup>b</sup>\*

<sup>a</sup>School of Basic Medical Sciences, TaiShan Medical University, Tai'an 271016, People's Republic of China, and <sup>b</sup>Faculty of Chemistry and Chemical Engineering, TaiShan Medical University, Tai'an 271016, People's Republic of China Correspondence e-mail: Binboll@126.com

Received 23 May 2012; accepted 8 June 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.004 Å; disorder in main residue; R factor = 0.066; wR factor = 0.185; data-to-parameter ratio = 13.5.

The title salt,  $C_{12}H_9N_2^+$ ·CH<sub>3</sub>O<sub>4</sub>S<sup>-</sup>, contains an almost planar phenazinium cation [largest deviation from the least-squares plane = 0.040(3) Å] and a methyl sulfate anion. The sulfate moiety of the latter is disordered over two sets of sites in a 0.853 (5):0.147 (5) ratio. In the crystal, the cations and anions are arranged alternately in layers parallel to (010). The cations pack along [100] with a tilt angle of  $28.96 (4)^{\circ}$  between this axis and the mean plane and are linked through interplanar  $\pi$ - $\pi$  interactions [shortest interplanar distance = 3.421 (4) Å]. N-H···O hydrogen-bonding between the cations and anions is also observed.

#### **Related literature**

For background to the use of phenazine in crystal engineering, see: Laursen & Nielsen (2004). For a related structure, see: Meszko et al. (2002).



**Experimental** 

Crystal data  $C_{12}H_9N_2^+ \cdot CH_3O_4S^-$ 

 $M_r = 292.31$ 

## organic compounds

| Triclinic, P1                     | $V = 640.5 (7) \text{ Å}^3$               |
|-----------------------------------|-------------------------------------------|
| a = 5.818 (5)  Å                  | Z = 2                                     |
| b = 9.667 (5)  Å                  | Mo $K\alpha$ radiation                    |
| c = 11.460 (5) Å                  | $\mu = 0.27 \text{ mm}^{-1}$              |
| $\alpha = 95.241 \ (5)^{\circ}$   | T = 293  K                                |
| $\beta = 90.336 (5)^{\circ}$      | $0.18 \times 0.15 \times 0.12 \text{ mm}$ |
| $\gamma = 93.691 \ (5)^{\circ}$   |                                           |
| Data collection                   |                                           |
| Bruker APEXII CCD                 | 3642 measured reflections                 |
| diffractometer                    | 2572 independent reflections              |
| Absorption correction: multi-scan | 2266 reflections with $I > 2\sigma($      |

| bsorption correction: multi-scan       | 2266 reflections with $I > 2\sigma(I)$ |
|----------------------------------------|----------------------------------------|
| (SADABS; Bruker, 2005)                 | $R_{\rm int} = 0.127$                  |
| $T_{\min} = 0.951, \ T_{\max} = 0.965$ |                                        |
|                                        |                                        |

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.066$ | 191 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.185$               | H-atom parameters constrained                              |
| S = 1.07                        | $\Delta \rho_{\rm max} = 0.54 \text{ e } \text{\AA}^{-3}$  |
| 2572 reflections                | $\Delta \rho_{\rm min} = -0.72 \text{ e } \text{\AA}^{-3}$ |

#### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$ | $D-\mathrm{H}$ | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdot \cdot \cdot A$ |
|-----------------------------|----------------|-------------------------|--------------|-----------------------------|
| $N1 - H101 \cdots O2^i$     | 0.86           | 1.82                    | 2.647 (5)    | 161                         |
| Summatry and (i) x          | 1              |                         |              |                             |

Symmetry code: (i) x - 1, y, z.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

This work was supported by the Shandong College research program (J11LB15) and the Young and Middle-aged Scientist Research Awards Foundation of Shandong Province (BS2010CL045).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2637).

#### References

- Altomare, A., Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Rizzi, R. (1999). J. Appl. Cryst. 32, 339-340.
- Bruker (2005). APEX, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Laursen, J. B. & Nielsen, J. (2004). Chem. Rev. 104, 1663-1685.
- Meszko, J., Sikorski, A., Huta, O. M., Konitz, A. & Błażejowski, J. (2002). Acta Cryst. C58, 0669-0671.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

# supplementary materials

Acta Cryst. (2012). E68, o2101 [doi:10.1107/S1600536812026025]

## Phenazinium methyl sulfate

### Nai-Qiang Zhang, Ping Li, Jian Dong and Hong-Yu Chen

#### Comment

In the past decade, phenazines have been widely used as a template in crystal engineering for its two equivalent strong proton acceptors ( $sp^2$  N atoms) and potential weak C—H donor functions, where the aromatic system can act as a good  $\pi$ -donor. Accordingly, phenazine has been employed in the design of charge-transfer complexes and hydrogen bonded assemblies (Laursen *et al.*, 2004). Here, we report the crystal structure of an 1:1 complex of phenazine with methyl sulfate.

The asymmetric unit of the title salt,  $[C_{12}H_9N_2]^+$  [CH<sub>3</sub>O<sub>4</sub>S]<sup>-</sup>, contains a phenazinium cation and a methyl sulfate anion (Fig. 1), which is located around the inversion centre. The phenazinium cations show an almost planar configuration, where the largest deviation from the least-square-plane of phenazine is 0.040 (3)Å for C3. The methyl sulfate anions are disordered over two positions in a ratio of 0.853 (5):0.147 (5). The distribution of S—O bond lengths in the methyl sulfate anion is similar to that in the crystal structure of 10-methylacridinium methyl sulfate (Meszko *et al.*, 2002). The S —O bond lengths associated with the methyl group [1.614 (2) Å for the major and 1.486 (18) for the minor part] are longer than the other S—O bonds (1.421 (3) Å, 1.448 (2) Å and 1.423 (2) Å (major part); 1.516 (16) Å (minor part)).

The cations pack along [100] with a tilt angle between the phenazinium plane and the *a* axis being 28.96 (4)°. The shortest plane-to-plane  $\pi$ -- $\pi$  interactions are 3.421 (4) Å. The phenazinium cations and the methyl sulfate anions are alternately arranged parallel to (010) (Fig. 2). Except for Coulombic interactions, there are classical hydrogen bonding interactions between the phenazinium cations and methyl sulfate anions (Table 1), which also play an important role in the stabilisation of the title structure.

### Experimental

To a solution containing phenzine (1.0 g, 0.0056 mmol) in *n*-butyl acetate (20 mL) was added dimethyl sulfate (5.4 mL, 0.057 mmol). The resulting mixture was continuously stired at 373 K for 1 h, then the orange reaction solution was cooled to 283 K. The precipitated yellow solid were collected and recrystallized in ethanol.

#### Refinement

All H atoms were geometrically fixed and allowed to ride on their attached atoms, whit C—H = 0.93 Å and  $U_{iso}(H)$ =  $1.2U_{eq}(C)$  for all phenzine H atoms, and C—H = 0.96 Å and  $U_{iso}(H)$ =  $1.5U_{eq}(C)$  for the methyl group. The proton attached to the phenazine N atom was also geometrically fixed, with N—H = 0.86Å and  $U_{iso}(H)$ =  $1.2U_{eq}(N)$ . The sulfate part of the anion was modelled as disordered over two sets of sites in a 0.853 (5):0.147 (5) ratio; O atoms of the minor component were refined with isotropic displacement parameters.

#### **Computing details**

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT* (Bruker, 2005); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* 



(Sheldrick, 2008); molecular graphics: *XP* in *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *publCIF* (Westrip, 2010).

### Figure 1

Molecular structure of the title compound with displacement ellipsoids at the 50% probability level. The disorder of the anion is shown.



## Figure 2

A packing diagram of the title structure viewed approximately along [100]. Hydrogen bonding interactions are shown with dashed lines.

## Phenazinium methyl sulfate

| Crystal data                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $C_{12}H_9N_2^{+} CH_3O_4S^{-}$ $M_r = 292.31$ Triclinic, <i>P</i> 1<br>Hall symbol: -P 1<br>a = 5.818 (5) Å<br>b = 9.667 (5) Å<br>c = 11.460 (5) Å<br>a = 95.241 (5)°<br>$\beta = 90.336$ (5)°<br>$\gamma = 93.691$ (5)°<br>V = 640.5 (7) Å <sup>3</sup>     | Z = 2<br>F(000) = 304<br>$D_x = 1.516 \text{ Mg m}^{-3}$<br>Mo K $\alpha$ radiation, $\lambda = 0.71069 \text{ Å}$<br>Cell parameters from 4012 reflections<br>$\theta = 0.4-14.1^{\circ}$<br>$\mu = 0.27 \text{ mm}^{-1}$<br>T = 293 K<br>Block, yellow<br>$0.18 \times 0.15 \times 0.12 \text{ mm}$ |
| Data collection                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                       |
| Bruker APEXII CCD<br>diffractometer<br>Radiation source: fine-focus sealed tube<br>Graphite monochromator<br>$\varphi$ - and $\omega$ - scans<br>Absorption correction: multi-scan<br>( <i>SADABS</i> ; Bruker, 2005)<br>$T_{\min} = 0.951, T_{\max} = 0.965$ | 3642 measured reflections<br>2572 independent reflections<br>2266 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.127$<br>$\theta_{max} = 26.4^\circ, \ \theta_{min} = 2.1^\circ$<br>$h = -7 \rightarrow 6$<br>$k = -12 \rightarrow 11$<br>$l = -14 \rightarrow 12$                                 |

Refinement

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier        |
|-------------------------------------------------|---------------------------------------------------------|
| Least-squares matrix: full                      | map                                                     |
| $R[F^2 > 2\sigma(F^2)] = 0.066$                 | Hydrogen site location: inferred from                   |
| $wR(F^2) = 0.185$                               | neighbouring sites                                      |
| S = 1.07                                        | H-atom parameters constrained                           |
| 2572 reflections                                | $w = 1/[\sigma^2(F_o^2) + (0.1118P)^2 + 0.2488P]$       |
| 191 parameters                                  | where $P = (F_o^2 + 2F_c^2)/3$                          |
| 0 restraints                                    | $(\Delta/\sigma)_{\rm max} < 0.001$                     |
| Primary atom site location: structure-invariant | $\Delta \rho_{\rm max} = 0.54 \text{ e} \text{ Å}^{-3}$ |
| direct methods                                  | $\Delta \rho_{\min} = -0.72 \text{ e} \text{ Å}^{-3}$   |

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2$ sigma( $F^2$ ) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|      | x           | У           | Z            | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|------|-------------|-------------|--------------|-----------------------------|-----------|
| N1   | 0.3313 (3)  | 0.1672 (2)  | 0.84021 (18) | 0.0391 (5)                  |           |
| H101 | 0.2116      | 0.2132      | 0.8318       | 0.047*                      |           |
| N2   | 0.7148 (3)  | 0.0191 (2)  | 0.86741 (19) | 0.0432 (5)                  |           |
| C1   | 0.4340 (4)  | 0.3195 (3)  | 1.0121 (2)   | 0.0447 (6)                  |           |
| H100 | 0.3031      | 0.3686      | 1.0053       | 0.054*                      |           |
| C2   | 0.5880 (5)  | 0.3558 (3)  | 1.1006 (2)   | 0.0512 (6)                  |           |
| H2   | 0.5613      | 0.4302      | 1.1550       | 0.061*                      |           |
| C3   | 0.7895 (5)  | 0.2821 (3)  | 1.1116 (2)   | 0.0508 (6)                  |           |
| Н3   | 0.8952      | 0.3112      | 1.1714       | 0.061*                      |           |
| C4   | 0.8303 (4)  | 0.1705 (3)  | 1.0367 (2)   | 0.0461 (6)                  |           |
| H4   | 0.9602      | 0.1214      | 1.0468       | 0.055*                      |           |
| C5   | 0.6737 (4)  | 0.1283 (2)  | 0.9423 (2)   | 0.0380 (5)                  |           |
| C6   | 0.4758 (4)  | 0.2065 (2)  | 0.9312 (2)   | 0.0372 (5)                  |           |
| C7   | 0.3673 (4)  | 0.0595 (3)  | 0.7627 (2)   | 0.0406 (5)                  |           |
| C8   | 0.2129 (5)  | 0.0209 (3)  | 0.6681 (2)   | 0.0538 (7)                  |           |
| H8   | 0.0821      | 0.0694      | 0.6588       | 0.065*                      |           |
| С9   | 0.2593 (6)  | -0.0875 (3) | 0.5918 (3)   | 0.0640 (8)                  |           |
| Н9   | 0.1585      | -0.1136     | 0.5292       | 0.077*                      |           |
| C10  | 0.4572 (6)  | -0.1629 (3) | 0.6041 (3)   | 0.0636 (8)                  |           |
| H10  | 0.4855      | -0.2361     | 0.5487       | 0.076*                      |           |
| C11  | 0.6058 (5)  | -0.1301 (3) | 0.6951 (3)   | 0.0557 (7)                  |           |
| H11  | 0.7332      | -0.1820     | 0.7032       | 0.067*                      |           |
| C12  | 0.5663 (4)  | -0.0160 (3) | 0.7782 (2)   | 0.0414 (5)                  |           |
| S1   | 0.88381 (9) | 0.37619 (6) | 0.71184 (5)  | 0.0422 (3)                  |           |
| O1A  | 0.8047 (4)  | 0.5126 (3)  | 0.7145 (2)   | 0.0583 (8)                  | 0.853 (5) |
| O2   | 1.0304 (4)  | 0.3550 (2)  | 0.81033 (17) | 0.0602 (6)                  |           |

# supplementary materials

| O3   | 0.7187 (5) | 0.2637 (3)  | 0.6816 (3)   | 0.0894 (9) |           |
|------|------------|-------------|--------------|------------|-----------|
| O4A  | 1.0400 (4) | 0.3553 (3)  | 0.59643 (19) | 0.0545 (7) | 0.853 (5) |
| C13  | 1.2319 (5) | 0.4504 (4)  | 0.5904 (3)   | 0.0679 (9) |           |
| H13A | 1.1875     | 0.5429      | 0.6129       | 0.102*     |           |
| H13B | 1.2884     | 0.4454      | 0.5117       | 0.102*     |           |
| H13C | 1.3507     | 0.4278      | 0.6426       | 0.102*     |           |
| O1B  | 1.035 (3)  | 0.4806 (16) | 0.6513 (14)  | 0.063 (5)* | 0.147 (5) |
| O4B  | 0.718 (3)  | 0.4697 (18) | 0.7705 (17)  | 0.069 (5)* | 0.147 (5) |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | <i>U</i> <sup>23</sup> |
|-----|-------------|-------------|-------------|--------------|--------------|------------------------|
| N1  | 0.0301 (9)  | 0.0466 (11) | 0.0416 (10) | 0.0090 (8)   | -0.0058 (8)  | 0.0053 (8)             |
| N2  | 0.0344 (10) | 0.0489 (12) | 0.0471 (11) | 0.0108 (8)   | -0.0026 (9)  | 0.0032 (9)             |
| C1  | 0.0416 (13) | 0.0469 (13) | 0.0465 (13) | 0.0125 (10)  | -0.0029 (11) | 0.0034 (10)            |
| C2  | 0.0561 (15) | 0.0510 (14) | 0.0457 (14) | 0.0085 (12)  | -0.0037 (12) | -0.0027 (11)           |
| C3  | 0.0452 (14) | 0.0609 (16) | 0.0455 (13) | 0.0025 (12)  | -0.0137 (11) | 0.0018 (11)            |
| C4  | 0.0337 (12) | 0.0571 (15) | 0.0487 (13) | 0.0088 (10)  | -0.0081 (11) | 0.0077 (11)            |
| C5  | 0.0285 (10) | 0.0443 (12) | 0.0420 (12) | 0.0061 (9)   | -0.0010 (9)  | 0.0063 (9)             |
| C6  | 0.0313 (11) | 0.0426 (12) | 0.0389 (11) | 0.0054 (9)   | -0.0021 (9)  | 0.0073 (9)             |
| C7  | 0.0347 (11) | 0.0465 (13) | 0.0406 (12) | 0.0027 (9)   | -0.0030 (10) | 0.0041 (10)            |
| C8  | 0.0491 (15) | 0.0617 (16) | 0.0497 (14) | 0.0034 (12)  | -0.0147 (12) | 0.0017 (12)            |
| C9  | 0.0687 (19) | 0.0686 (19) | 0.0517 (16) | 0.0006 (15)  | -0.0150 (14) | -0.0065 (14)           |
| C10 | 0.072 (2)   | 0.0604 (17) | 0.0547 (16) | 0.0045 (15)  | 0.0017 (15)  | -0.0138 (13)           |
| C11 | 0.0527 (15) | 0.0530 (15) | 0.0603 (16) | 0.0112 (12)  | 0.0039 (13)  | -0.0057 (12)           |
| C12 | 0.0346 (11) | 0.0471 (13) | 0.0424 (12) | 0.0040 (9)   | 0.0013 (10)  | 0.0029 (10)            |
| S1  | 0.0289 (3)  | 0.0536 (4)  | 0.0452 (4)  | 0.0116 (2)   | -0.0043 (2)  | 0.0049 (3)             |
| O1A | 0.0508 (14) | 0.0665 (16) | 0.0608 (15) | 0.0302 (12)  | -0.0018 (12) | 0.0050 (12)            |
| O2  | 0.0572 (12) | 0.0763 (14) | 0.0491 (11) | 0.0274 (10)  | -0.0149 (9)  | 0.0008 (9)             |
| O3  | 0.0926 (19) | 0.0844 (18) | 0.0879 (18) | -0.0211 (15) | -0.0266 (16) | 0.0104 (14)            |
| O4A | 0.0513 (13) | 0.0639 (15) | 0.0479 (13) | 0.0122 (11)  | 0.0020 (10)  | -0.0033 (10)           |
| C13 | 0.0365 (13) | 0.107 (3)   | 0.0619 (17) | 0.0065 (15)  | 0.0059 (13)  | 0.0143 (17)            |

## Geometric parameters (Å, °)

| N1—C7   | 1.333 (3) | С8—Н8   | 0.9300     | _ |
|---------|-----------|---------|------------|---|
| N1—C6   | 1.347 (3) | C9—C10  | 1.415 (5)  |   |
| N1—H101 | 0.8600    | С9—Н9   | 0.9300     |   |
| N2—C5   | 1.333 (3) | C10—C11 | 1.353 (4)  |   |
| N2-C12  | 1.340 (3) | C10—H10 | 0.9300     |   |
| C1—C2   | 1.355 (4) | C11—C12 | 1.422 (4)  |   |
| C1—C6   | 1.401 (3) | C11—H11 | 0.9300     |   |
| C1—H100 | 0.9300    | S1—O3   | 1.421 (3)  |   |
| С2—С3   | 1.421 (4) | S1—O1A  | 1.423 (2)  |   |
| С2—Н2   | 0.9300    | S1—O2   | 1.448 (2)  |   |
| C3—C4   | 1.350 (4) | S1—O4B  | 1.486 (18) |   |
| С3—Н3   | 0.9300    | S1—O1B  | 1.516 (16) |   |
| C4—C5   | 1.424 (3) | S1—O4A  | 1.614 (2)  |   |
| C4—H4   | 0.9300    | O4A—C13 | 1.406 (4)  |   |
|         |           |         |            |   |

| C5—C6        | 1.429 (3)  | C13—H13A       | 0.9600      |
|--------------|------------|----------------|-------------|
| C7—C8        | 1.412 (3)  | C13—H13B       | 0.9600      |
| C7—C12       | 1.426 (4)  | C13—H13C       | 0.9600      |
| C8—C9        | 1.345 (4)  |                |             |
|              |            |                |             |
| C7—N1—C6     | 122.4 (2)  | C8—C9—C10      | 121.8 (3)   |
| C7—N1—H101   | 118.8      | С8—С9—Н9       | 119.1       |
| C6—N1—H101   | 118.8      | С10—С9—Н9      | 119.1       |
| C5—N2—C12    | 118.3 (2)  | C11—C10—C9     | 121.1 (3)   |
| C2—C1—C6     | 118.8 (2)  | C11—C10—H10    | 119.5       |
| C2-C1-H100   | 120.6      | C9-C10-H10     | 119.5       |
| C6-C1-H100   | 120.6      | C10-C11-C12    | 119.6 (3)   |
| C1—C2—C3     | 121.2 (2)  | C10-C11-H11    | 120.2       |
| C1—C2—H2     | 119.4      | C12—C11—H11    | 120.2       |
| С3—С2—Н2     | 119.4      | N2-C12-C11     | 120.2 (2)   |
| C4—C3—C2     | 121.2 (2)  | N2—C12—C7      | 121.7 (2)   |
| С4—С3—Н3     | 119.4      | C11—C12—C7     | 118.1 (2)   |
| С2—С3—Н3     | 119.4      | O3—S1—O1A      | 116.76 (18) |
| C3—C4—C5     | 119.7 (2)  | O3—S1—O2       | 113.70 (16) |
| C3—C4—H4     | 120.1      | O1A—S1—O2      | 114.03 (13) |
| С5—С4—Н4     | 120.1      | O3—S1—O4B      | 95.5 (7)    |
| N2—C5—C4     | 119.9 (2)  | O1A—S1—O4B     | 37.2 (7)    |
| N2—C5—C6     | 122.1 (2)  | O2—S1—O4B      | 100.4 (7)   |
| C4—C5—C6     | 118.0 (2)  | O3—S1—O1B      | 138.7 (6)   |
| N1—C6—C1     | 121.5 (2)  | O1A—S1—O1B     | 64.2 (6)    |
| N1—C6—C5     | 117.4 (2)  | O2—S1—O1B      | 100.5 (6)   |
| C1—C6—C5     | 121.1 (2)  | O4B—S1—O1B     | 100.4 (10)  |
| N1—C7—C8     | 121.1 (2)  | O3—S1—O4A      | 97.18 (17)  |
| N1—C7—C12    | 118.1 (2)  | 01A—S1—O4A     | 106.51 (15) |
| C8—C7—C12    | 120.9 (2)  | O2—S1—O4A      | 106.33 (13) |
| C9—C8—C7     | 118.5 (3)  | O4B—S1—O4A     | 142.5 (8)   |
| С9—С8—Н8     | 120.7      | O1B—S1—O4A     | 49.6 (6)    |
| С7—С8—Н8     | 120.7      | C13—O4A—S1     | 116.1 (2)   |
|              |            |                |             |
| C6—C1—C2—C3  | 0.4 (4)    | C12—C7—C8—C9   | -0.9 (4)    |
| C1—C2—C3—C4  | -2.3 (5)   | C7—C8—C9—C10   | 0.0 (5)     |
| C2—C3—C4—C5  | 2.3 (4)    | C8—C9—C10—C11  | 1.3 (6)     |
| C12—N2—C5—C4 | -178.6 (2) | C9—C10—C11—C12 | -1.6 (5)    |
| C12—N2—C5—C6 | 1.0 (4)    | C5—N2—C12—C11  | 178.9 (2)   |
| C3—C4—C5—N2  | 179.2 (2)  | C5—N2—C12—C7   | -0.5 (4)    |
| C3—C4—C5—C6  | -0.5 (4)   | C10-C11-C12-N2 | -178.7 (3)  |
| C7—N1—C6—C1  | -179.6(2)  | C10—C11—C12—C7 | 0.7 (4)     |
| C7—N1—C6—C5  | 0.3 (4)    | N1—C7—C12—N2   | -0.1 (4)    |
| C2-C1-C6-N1  | -178.8 (2) | C8—C7—C12—N2   | 180.0 (2)   |
| C2—C1—C6—C5  | 1.4 (4)    | N1—C7—C12—C11  | -179.5 (2)  |
| N2-C5-C6-N1  | -0.9 (4)   | C8—C7—C12—C11  | 0.6 (4)     |
| C4—C5—C6—N1  | 178.8 (2)  | 03—S1—O4A—C13  | 179.8 (2)   |
| N2—C5—C6—C1  | 178.9 (2)  | O1A—S1—O4A—C13 | 59.1 (3)    |
| C4—C5—C6—C1  | -1.4 (4)   | O2—S1—O4A—C13  | -62.9 (3)   |
|              |            |                |             |

# supplementary materials

| C6—N1—C7—C8<br>C6—N1—C7—C12<br>N1—C7—C8—C9 | -179.9 (2)<br>0.2 (4)<br>179.2 (3) | O4B—S1—O4A—C13<br>O1B—S1—O4A—C13 | 70.9 (11)<br>27.2 (8) |
|--------------------------------------------|------------------------------------|----------------------------------|-----------------------|
|                                            |                                    |                                  |                       |

Hydrogen-bond geometry (Å, °)

| D—H···A                 | <i>D</i> —Н | H···A | $D \cdots A$ | <i>D</i> —H··· <i>A</i> |
|-------------------------|-------------|-------|--------------|-------------------------|
| N1—H101…O2 <sup>i</sup> | 0.86        | 1.82  | 2.647 (5)    | 161                     |

Symmetry code: (i) x-1, y, z.